Abstract

본 논문은 볼록 규준화 RLS(Recursive Least Squares)에 쓰이는 규준화를 위한 상수를 정하는 법을 제안한다. Eksioglu와 Tanc는 희소성 음향 채널 추정을 위해서 볼록 규준화 RLS 알고리즘을 구현하였다. 그러나 이 알고리즘은 더 좋은 추정 성능을 위해서 채널의 참 임펄스 응답 정보가 사용된다. 본 논문에서는 이 같은 참 임펄스 응답 정보가 필요 없는 규준화 상수를 위한 두 가지 선정법을 제안한다. 그리고 제안한 방법을 사용했을 때 Eksioglu와 Tanc의 방법에 필적한 추정 성능을 유지함을 보인다. We develop two methods to select a constant in the RLS (Recursive Least Squares) with the convex regularization. The RLS with the convex regularization was proposed by Eksioglu and Tanc in order to estimate the sparse acoustic channel. However the algorithm uses the regularization constant which needs the information about the true channel response for the best performance. In this paper, we propose two methods to select the regularization constant which don't need the information about the true channel response. We show that the estimation performance using the proposed methods is comparable with the Eksioglu and Tanc's algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.