Abstract

Gas-liquid slug flow (also termed as Taylor flow) is a flow pattern characterized by the alternate movement of elongated bubbles and liquid slugs. Gas-liquid slug flow operation in microchannels has been found important implications in the enhancement of gas-liquid reactions due to its advantages such as easy control, uniform bubble and slug size, narrowed residence time distribution as well as enhanced radial mixing. This review presents the basic conceptions and recent research progress on flow and mass transfer characteristics during the gas-liquid slug flow in microchannels. The gas bubble formation mechanisms, the corresponding bubble and liquid lengths, and mass transfer during bubble formation are summarized. For regular slug flow in the main section of microchannels, several important aspects are addressed including bubble cross-sectional shape and liquid film profile, internal liquid recirculation and leakage flow through the gutters, gas-liquid mass transfer coefficients and coupling phenomena between flow and mass transfer in physical and chemical absorption processes. Finally, an outlook is given for future research directions in this field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call