Abstract
Wrinkle, spring-back, and fracture are major defects frequently found in the sheet metal forming process, and the reduction of such defects is difficult as they are affected by uncontrollable factors, such as variations in properties of the incoming material and process parameters. Without any countermeasures against these issues, attempts to reduce defects through optimal design methods often lead to failure. In this research, a new multi-attribute robust design methodology, based on the Mahalanobis Taguchi System (MTS), is presented for reducing the possibilities of wrinkle, spring-back, and fracture. MTS performs experimentation, based on the orthogonal array under various noise conditions, uses the SN ratio of the Mahalanobis distance as a performance metric. The proposed method is illustrated through a robust design of the sheet metal forming process of a cross member of automotive body.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Korean Society of Manufacturing Process Engineers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.