Abstract

It has been reported that a ship sailing in shallow water possesses better straight-line stability due to the change of fluid flow around the ship. This tendency affects manoeuvring characteristics of the ship. To investigate this phenomenon, indoor free running model test(FRMT) on KVLCC2 was carried out in three water depth conditions(H/T = 1.2, 1.5 & 2.0). Turning circle tests(± 35°) and zigzag tests(± 20°/5° and ± 20°/10°) were conducted with newly developed indoor FRMT system, and the manoeuvring results were compared with test results from other institutes. As the water depth decreased, the yaw rate of the ship decreased, and the distances of circular trajectories at the same heading angle increased in the turning circle tests. The first overshoot angles of the zigzag tests decreased. From both tests, the time for course change increased as the water depth decreased. These manoeuvring characteristics show that KVLCC2 in shallow water becomes more stable in terms of straight-line stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call