Abstract
In this paper, effects of the trench angle() on the breakdown voltage according to the process parameters of p-base region and doping concentrations of n-drift region in a Trench Gate IGBT (TIGBT) device were analyzed by computer simulation. Processes parameters used by variables are diffusion temperature, implant dose of p-base region and doping concentration of n-drift region, and aspects of breakdown voltage change with change of each parameter were examined. As diffusion temperature of the p-base region increases, depth of the p-base region increases and effect of the diffusion temperature on the breakdown voltage is very low in the case of small trench angle() but that is increases 134.8 % in the case of high trench angle(). Moreover, as implant dose of the p-base region increases, doping concentration of the p-base region increases and effect of the implant dose on the breakdown voltage is very low in the case of small trench angle() but that is increases 232.1 % in the case of high trench angle(). These phenomenons is why electric field concentrated in the trench is distributed to the p-base region as the diffusion temperature and implant dose of the p-base increase. However, effect of the doping concentration variation in the n-drift region on the breakdown voltage varies just 9.3 % as trench angle increases from to . This is why magnitude of electric field concentrated in the trench changes, but direction of that doesn`t change. In this paper, respective reasons were analyzed through the electric field concentration analysis by computer simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Korean Institute of Electrical and Electronic Material Engineers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.