Abstract

We have built a constructive method of investigation and approximate solution for nonlinear Gursa’s problem with prehistory. We have established sufficient condition of subsistence, existence of unity and constant signs solution of the investigated problem. At mathematical description to different nature process (gas sorption, the spread of moisture in the porous substances, pipes heating by a stream of hot water, drying by the airflow, etc. [1]) we often come to boundary value problems for nonlinear differential equations in partial derivatives, when not all output data are known, that is some of them need to be found from auxiliary nonlinear problems, which are mathematical models of processes that proceeded the research. These problems should be named as problems with prehistory. One approach to investigation and approximate solution to such a problem has been proposed in the current paper.

Highlights

  • Будується конструктивний метод дослiдження та наближеного розв’язання нелiнiйної задачi Гурса з передiсторiєю

  • We have built a constructive method of investigation and approximate solution for nonlinear Gursa’s problem with prehistory

  • At mathematical description to different nature process we often come to boundary value problems for nonlinear differential equations in partial derivatives, when not all output data are known, that is some of them need to be found from auxiliary nonlinear problems, which are mathematical models of processes that proceeded the research

Read more

Summary

Bulletin of Taras Shevchenko National University of Kyiv

(b) для всяких неперевно диференцiйовних пар функцiй zi(x, y), vi(x, y) ∈ B1,i, якi задовольняють умови D(κ,s)zi(x, y) D(κ,s)Vi(x, y), (x, y) ∈ Di, i = 1, 2, κ = 0, 1, s = 0, 1, κ+s < 2, в областi B1,i виконуються нерiвностi. (x, y) ∈ Di, 3) неперервнi функцiї Hi[zi(x, y); vi(x, y)] в областi B1,i задовольняють умову Лiпшиця, тобто для всяких з простору C1(Di) функцiй zi,r(x, y), vi,r(x, y) ∈ B1,i, r = 1, 2, виконуються умови. Функцiї zi,0(x, y), vi,0(x, y) ∈ C∗Di, якi належать областi B1,i i задовольняють умови (12), називаються функцiями порiвняння крайової задачi (1)—(5). Якщо функцiї fi[Ui(x, y)] ∈ C1(Bi) та iснують функцiї порiвняння задачi (1)—(5), то множина функцiй qi,p(x, y), ci,p(x, y), якi задовольняють умови (10), (16) не порожня. Аналогiчно доводиться i друга iз нерiвностей (16), якщо c(i,κp,s)(x, y) вибирати згiдно (18) i Лема 2 доведена

Таким чином справедлива наступна
Розглянемо рiвняння
Список використаних джерел
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call