Abstract

Luminescence and thermal stability of defects formed in alpha-Al2O3 single crystals under pulsed ion beam treatment (C+/H+ ions with an energy 300 keV, pulse duration 80 ns) were investigated. This type of irradiation leads to the intensive generation of both single F- and F+-centers and more complex defects (F2-type aggregate centers or vacancy-impurity complexes) in alpha-Al2O3. It was confirmed by the results of optical absorption, photoluminescence, and pulsed cathodoluminescence measurements. The thermal stability of F-type defects formed in alpha-Al2O3 under the pulsed ion beam treatment is comparable to the stability of radiation-induced defects in neutron-irradiated samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call