Abstract

An efficient pulsed gas-discharge inductive CO2-laser with a radiation energy of 1.05 J has been developed for the first time. In this case, the pulse duration of the laser radiation was about 10 msec. The maximum efficiency of 21.1% was obtained at a radiation energy of 340 mJ. RF current pulses propagated along the inductor conductor and, thus, an inductive discharge was formed to create an inverse population at the infrared (IR) transitions of CO2* molecules. The temporal and energy characteristics of the radiation of the inductive CO2-laser depending on the duration of the pump pulse are investigated. The spatial characteristics and spectrum of the radiation of the developed laser are estimated. The divergence of the laser radiation was 0.52 mrad. The cross-sectional dimension of the laser output beam was about 35 mm in diameter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call