Abstract
AbstractThe possibility of synthesizing integrated GaN/por-Si heterostructures by plasma-assisted molecular beam epitaxy without an A1N/Si buffer layer is demonstrated. The beneficial effect of the high-temperature nitridation of a silicon substrate before GaN growth on the crystal quality of the GaN/Si layers is shown. It is established that, to obtain two-dimensional GaN layers on Si(111), it is reasonable to use compliant por-Si substrates and low-temperature GaN seed layers with a 3D morphology synthesized by plasma-assisted molecular beam epitaxy at relatively low substrate temperatures under stoichiometric conditions and upon enrichment with nitrogen. In this case, a self-assembled array of GaN seed nanocolumns with a fairly uniform diameter distribution forms on the por-Si substrate surface. The basic GaN layers, in turn, should be grown at a high temperature under stoichiometric conditions upon enrichment with gallium, upon which the coalescence of nucleated GaN nanocolumns and growth of a continuous two-dimensional GaN layer are observed. The use of compliant Si substrates is a relevant approach for forming GaN-based semiconductor device heterostructures by plasma-assisted molecular beam epitaxy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.