Abstract

탄소환원질화법을 이용하여 질화알루미늄(Aluminum Nitride: AlN)을 제조하는 연구를 배치당 0.7 ~ 1.5 kg 규모로 규모 확대하여 수행하였다. 고품위 알루미나 분말과 탄소(carbon black)를 배합하여 흑연 도가니에 장입하고, 노내 진공도 <TEX>$2.0{\times}10^{-1}Torr$</TEX>에서 온도(<TEX>$1,550{\sim}1,750^{\circ}C$</TEX>), 시간(0.5 ~ 4 hr), <TEX>$N_2$</TEX>유량(<TEX>$10{\sim}40{\ell}/min$</TEX>)을 변화시키면서 AlN을 합성하였다. 실험결과 합성온도 <TEX>$1,700{\sim}1,750^{\circ}C$</TEX>, 합성시간 3시간, 질소유량 <TEX>$40{\ell}/min$</TEX>가 적정 조건이었다. 또한, 합성한 AlN에 잔존하는 탄소를 제거하기 위하여 관상로에서 온도 <TEX>$650-750^{\circ}C$</TEX>, 1 - 2시간 범위에서 탈탄을 시킨 결과, 알루미나와 탄소 몰배합비 1 : 3.2 로 합성한 시료를 대기 분위기에서 탈탄온도 <TEX>$750^{\circ}C$</TEX>, 관상로의 회전속도 1.5 rpm에서 2시간 탈탄하는 것이 적정조건이었다. 시험 제조한 AlN의 성분 분석 결과 C 함량 835 ppm, O 함량 0.77%으로서 순도 99% 이상의 고품위 제품을 제조할 수 있었다. AlN powder was prepared by carbon reduction and subsequent nitridation method through the scale-up experiments of 0.7 ~ 1.5 kg per batch. AlN powder was synthesized using the mixture of <TEX>$Al_2O_3$</TEX> powder and carbon black at <TEX>$1,550{\sim}1,750^{\circ}C$</TEX> for 0.5 ~ 4 hours under nitrogen atmosphere (flow rate of nitrogen gas: <TEX>$10{\sim}40{\ell}/min$</TEX>) at <TEX>$2.0{\times}10^{-1}Torr$</TEX>. Experimental results showed that <TEX>$1,700{\sim}1,750^{\circ}C$</TEX> for the reaction temperature, 3 hr for reaction time, and <TEX>$40{\ell}/min$</TEX> for the flow rate of nitrogen gas were the optimal conditions. Also, in order to remove carbon in the synthesized AlN, the remained carbon was removed at <TEX>$650{\sim}750^{\circ}C$</TEX> for 1 ~ 2 hr using horizontal tube furnace. The results showed that 1 : 3.2 mol ratio of <TEX>$Al_2O_3$</TEX> to carbon black, reaction temperature of <TEX>$750^{\circ}C$</TEX>, reaction time of 2 hours, rotating speed of 1.5 rpm under atmosphere condition were the optimal conditions. Under these conditions, high-purity AlN powder over 99% could be prepared: carbon and oxygen contents of the AlN powder were 835 ppm and 0.77%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.