Abstract

In the 4th industrial revolution, changes in the technological paradigm have had a direct impact on the maintenance system of ships. The 2-stroke low speed engine system integrates with the core equipment required for propulsive power. The Condition Based Management (CBM) is defined as a technology that predictive maintenance methods in existing calender-based or running time based maintenance systems by monitoring the condition of machinery and diagnosis/prognosis failures. In this study, we have established a framework for CBM technology development on our own, and are engaged in engineering-based failure analysis, data development and management, data feature analysis and pre-processing, and verified the reliability of failure mode DB using LSTM algorithms. We developed various simulated failure mode scenarios for 2-stroke low speed engine and researched to produce data on onshore basis test_beds. The analysis and pre-processing of normal and abnormal status data acquired through failure mode simulation experiment used various Exploratory Data Analysis (EDA) techniques to feature extract not only data on the performance and efficiency of 2-stroke low speed engine but also key feature data using multivariate statistical analysis. In addition, by developing an LSTM classification algorithm, we tried to verify the reliability of various failure mode data with time-series characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.