Abstract

Introduction: 14C is one of the fifteen radionuclides that account for at least 99 % of the radiation dose to the critical group of the population from NPP emission sources. The continuous growth of the total capacity of operating NPPs leads to a significant increase in the amount of 14С emitted into the environment during NPP operation. Efficient capture and disposal of 14C, which has a half-life of 5760 years, is a very laborious undertaking. At the same time, due to the high mobility of this radionuclide, local foci of contamination with 14C can appear both near the NPP at a distance of 1–2 km from its ventilation pipe, and in soil and plants located at a distance of 20–30 km from the NPP due to the transfer of air masses. Therefore, the control of the formation of 14C during the operation of nuclear power plants, its content in emissions and discharges of nuclear power plants, as well as distribution in the environment is an urgent problem today. Purpose: Analysis of the environmental pollution due to emissions and discharges of radiocarbon from the Kurskaya nuclear power plant. Material and methods: During the research, a method being developed by specialists of the Laboratory for Radiation Safety of Personnel was used to determine the specific activity of 14C in soil and vegetation. To explore the 14C content in the air, the method of bubbling air through a TASC-HT-HTO-C-14 flow meter-sampler (Overhoff technology, USA) and the method of air conditioning through a Ballu BDH-15L air dryer (Ballu, Russia) were used. To prepare counting samples from selected soil and food samples, a method based on the combustion of selected samples in a Pyrolyser-6 Trio catalytic decomposition system was used. All prepared counting samples, including samples from surface water and biosubstrate of the personnel of the Kursk NPP and the population, were measured by liquid scintillation spectrometry on a Tri-Carb 3180 TR/SL alpha, beta spectrometer. Results: On the basis of an integrated approach to assessing the content of 14C in air, water, soil and food, an analysis of the formation of environmental pollution due to emissions and discharges 14C from the Kurskaya NPP was carried out. Conclusions: An increased content of the 14C radionuclide in soil samples, food products and vegetation in the area of the Kursk NPP with RBMK-1000 nuclear reactors is shown, both in comparison with the content of natural 14C and NPPs operating BN-600,800 and VVER-1000 nuclear reactors. The necessity of taking into account radiocarbon emissions from NPPs into the environment in the problem of optimizing the radiation protection of the population under the conditions of normal operation of NPPs is confirmed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.