Abstract

Fluid flow through fractured rock mass is an import issue in the performance and safety assessment of underground rock engineering, such as dam foundation, underground storage system and radioactive waste repository. The coupled shear-flow behavior of rock fractures have received extensive studies in the last few decades, however, some of the key issues such as shear-induced complexity of void space geometry and its influence on fluid flow through a fracture during large shear displacements remain unresolved. In this study, by using a coupled shear-flow apparatus with visualization of fluid flow, flow test on parallel-plates model with circular contacts and shear-flow-tracer test under constant normal load (CNL) boundary condition using artificial rock fracture with natural fracture surface characteristics were carried out. Numerical simulation was then conduced to simulate fluid flow through the fracture with void geometry obtained from coupled shear-flow test. The evolution of mechanical aperture and contact area distribution and their influence on fluid flow during shear process were evaluated. The influence of Reynolds number on the transmissivity of fracture was investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call