Abstract

Based on Lord and Shulman’s generalized thermoelastic theory with the relaxation time, the coupled thermo-hydro-mechanical problem for a poroelastic half-space foundation medium subjected to conoidal waves on its surface was investigated. Through modification of Biot’s theory of dynamic poroelasticity, the foundation medium was idealized as a uniform, fully saturated and poroelastic half-space body. The governing equations of the thermo-hydro-mechanical model were established. The analytical solutions of non-dimensional vertical displacement, excess pore water pressure, vertical stress and temperature were derived with the normal mode analysis method. In addition, the influences of different permeability coefficients and different frequencies on the non-dimensional vertical displacement, excess pore water pressure, vertical stress and temperature, were discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call