Abstract

Microbubbles were examined in vitro to find whether antibacterial activities would be exhibited against Saccharomyces cerevisiae, Escherichia coli, Salumonella typhimulium, Staphylococcus aureus, and Bacillus subtilis. Among them, Saccharomyces cerevisiae cells tended to grow well under both aerobic and anaerobic conditions by the action of microbubbles. To clarify the underlying mechanism(s), interaction of microbubbles with a model protein, bovine serum albumin (BSA), was studied using fluorescence spectroscopy. Collisional quenching of fluorescence was observed in the microbubble-BSA system. In addition, a taste sensor consisting of several kinds of lipid/polymer membranes for transforming the information on taste substances into electric signal was applied to Shochu made from microbubble water. The sensor output showed an electric pattern similar to an umami substance, monosodium glutamate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call