Abstract

Joint properties of electric control unit (ECU) module using Sn-Cu-(X)Al(Si) lead-free solder alloy were investigated for automotive electronics module. In this study, Sn-0.5Cu-0.01Al(Si) and Sn-0.5Cu-0.03Al(Si) (wt.%) lead-free alloys were fabricated as bar type by doped various weight percentages (0.01 and 0.03 wt.%) of Al(Si) alloy to Sn-0.5Cu. After fabrications of lead-free alloys, the ball-type solder alloys with a diameter of 450 um were made by rolling and punching. The melting temperatures of 0.01Al(Si) and 0.03Al(Si) were 230.2 and 230.8℃, respectively. To evaluation of properties of solder joint, test printed circuit board (PCB) finished with organic solderability perseveration (OSP) on Cu pad. The ball-type sol- ders were attached to test PCB with flux and reflowed for formation of solder joint. The maximum tem- perature of reflow was 260℃ for 50s above melting temperature. And then, we measured spreadability and shear strength of two Al(Si) solder materials compared to Sn-0.7Cu solder material used in industry. And also, microstructures in solder and intermetallic compounds (IMCs) were observed. Moreover, thickness and grain size of Cu6Sn5 IMC were measured and then compared with Sn-0.7Cu. With increasing the amounts of Al(Si), the Cu6Sn5 thickness was decreased. These results show the addition of Al(Si) could suppress IMC growth and improve the reliability of solder joint.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.