Abstract

The article presents the analysis of the linear complexity of periodic q-ary sequences when changing k of their terms per period. Sequences are formed on the basis of new generalized cyclotomy modulo equal to the degree of an odd prime. There has been obtained a recurrence relation and an estimate of the change in the linear complexity of these sequences, where q is a primitive root modulo equal to the period of the sequence. It can be inferred from the results that the linear complexity of these sequences does not sign ificantly decrease when k is less than half the period. The study summarizes the results for the binary case obtained earlier.

Highlights

  • The article presents the analysis of the linear complexity of periodic q-ary sequences when changing k of their terms per period

  • Sequences are formed on the basis of new generalized cyclotomy modulo equal to the degree of an odd prime

  • There has been obtained a recurrence relation and an estimate of the change in the linear complexity of these sequences, where q is a primitive root modulo equal to the period of the sequence. It can be inferred from the results that the linear complexity of these sequences does not sign ificantly decrease when k is less than half the period

Read more

Summary

Математическое моделирование

В этом разделе напомним определение q -ичных последовательностей из [15]. Пусть p – простое число, отличное от двух, p = ef +1, где e, f – целые положительные числа, и g – примитивный корень по модулю pn [16]. Согласно [10], обобщенные циклотомические классы порядка d j по модулю p j определяются следующим образом:. На основе этих классов в [11] сформировано новое семейство почти сбаланисированных бинарных последовательностей, их линейная сложность изучена в [3, 11, 12], когда f – четное. J =1 k k = 0, 1, ..., q −1, m =1, 2, ..., n, где q | f , b : 0 ≤ b < pn−1 f и rj = p j−1 f / q

Согласно определению
Из равенства
По условию v
Так как
СПИСОК ЛИТЕРАТУРЫ

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.