Abstract

Electrospun polymeric nanofibers have been extensively studied for biomedical materials because of their unique structures and relatively easy fabrication with biocompatible polymers. The amount of surface exposed amine groups increases as the blend ratio of block copolymer increases. Cell attachments on the nanofibers change according to the ratio of the block copolymer ((Poly(e-caprolactone, PCL), Poly(e-caprolactone)-Poly (ethylen glycol-)) in the blend. We assume that the PEG and amine moiety plays a significant role in biocompatibility of nanofiber surfaces. Collagen was used as a grafting material on the composite nanofibers to enhance the cell adhesion because the collagen is a major constituent of connective tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.