Abstract
현재 대부분의 도서관 정보검색 시스템들은 키워드 정합매칭(exacting matching) 방법으로 검색 서비스를 제공하고 있으므로, 검색 결과의 양이 방대하고 비적합한 결과가 많이 포함되어 있다. 따라서 본 논문에서는 키워드기반 검색 엔진의 단점을 보완하고 현재 도서관 검색 환경을 고려하여 보다 적합한 결과를 사용자에게 신속하게 제공하기 위하여 전공분류표와 사용자 프로파일을 이용한 검색 모델 SULRM(Retrieval Model using Subject Classification Table, User Profile & LSI)을 제안한다. SULRM은 키워드 검색 결과로 얻은 자료들을 분류된 자료의 경우와 미분류된 자료의 경우로 나누어, 분류된 자료의 경우에는 전공분류표를 생성하여 자료 필터링을 수행하고, 미분류된 자료의 경우에는 사용자 프로파일과 LSI(Latent Semantic Indexing)을 이용하여 자료의 순위를 결정해서 사용자에게 제시한다. 실험평가는 우리 대학의 디지털 도서관을 실험환경으로 하여 필터링 방법, 사용자 프로파일 갱신 방법, 그리고 문서순위결정 방법의 성능을 측정한다. Because existing information retrieval systems, in particular library retrieval systems, use 'exact keyword matching' with user's query, they present user with massive results including irrelevant information. So, a user spends extra effort and time to get the relevant information from the results. Thus, this paper will propose SULRM a Retrieval Model using Subject Classification Table, User profile, and LSI(Latent Semantic Indexing), to provide more relevant results. SULRM uses document filtering technique for classified data and document ranking technique for non-classified data in the results of keyword-based retrieval. Filtering technique uses Subject Classification Table, and ranking technique uses user profile and LSI. And, we have performed experiments on the performance of filtering technique, user profile updating method, and document ranking technique using the results of information retrieval system of our university' digital library system. In case that many documents are retrieved proposed techniques are able to provide user with filtered data and ranked data according to user's subject and preference.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.