Abstract

Teleoperation enables an operator to manipulate remote objects. One of the main goals in teleoperation researches is to provide the operator with the fueling of the telepresence, being present at the remote site. For these purposes, a master robot must be designed as a bilateral control system that can transmit position/force information to a slave robot and feedback the interaction force. A newly proposed impedance algorithm is applied for the control of a haptic interface that was developed as a master robot. With the movements of the haptic interface for position/force commands, impedance parameters are always varying. When the impedance parameters between an operator and the haptic interface and the dynamic model are known precisely, many model based control theories and methods can be used to control the device accurately. However, due to the parameters'variations and the uncertainty of the dynamic model, it is difficult to control haptic interfaces precisely. This paper presents a robust adaptive impedance control algorithm for haptic interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.