Abstract
본 논문에서는 가우시안 정규기저를 갖는 유한체 <TEX>$GF(2^n)$</TEX>의 곱셈기 오류 탐지 방법을 제시한다. 제안하는 오류 탐지 방법은 하드웨어로 단순하게 구성된다. 즉 n-bit 출력 직렬 곱셈기에서는 1 개의 AND gate, n+1 개의 XOR gate, 그리고 1 개의 1-bit register로 구성되며, 병렬 곱셈기의 경우 n 개의 AND gate와 2n-1 개의 XOR gate로 구성된다. 제안하는 방법은 C=AB 연산에 홀수개의 오류가 발생하는 경우 탐지가 된다. In this paper, we proposed an error detection in Gaussian normal basis multiplier over <TEX>$GF(2^n)$</TEX>. It is shown that by using parity prediction, error detection can be very simply constructed in hardware. The hardware overheads are only one AND gate, n+1 XOR gates, and one 1-bit register in serial multipliers, and so n AND gates, 2n-1 XOR gates in parallel multipliers. This method are detect in odd number of bit fault in C = AB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Korea Institute of Information Security and Cryptology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.