Abstract

Polymer nanocomposites are being increasingly used in a variety of tribological applications owing to their structural features. In this study, high density polyethylene (HDPE) composites with three different nanoparticles such as alumina (Al₂O₃), multi-walled carbon nanotubes (MWCNT) and graphene were fabricated using a newly designed friction stir processing tool and fixture. Mechanical test results showed that the fabricated polymer nanocomposites possess enhanced mechanical properties at higher tool rotational speed and traverse feed. The frictional coefficient and wear properties of the fabricated polymer nanocomposites were evaluated under dry sliding conditions using a pin-on-disc tribometer. Further the surfaces of the fabricated samples before and after wear studies were evaluated using scanning electron microscope. The wear test results showed that the HDPE/MWCNT has a very low mass loss as compared with HDPE/graphene, HDPE/Al₂O₃ composites and HDPE parent material. Moreover MWCNT particles act as a lubricant during wear test causing the worn surface of HDPE/MWCNT nanocomposites to be smoother as compared to other fabricated nanocomposites. The higher reflection peak between 23.71o to 23.95° obtained using X-ray diffraction (XRD) for the HDPE nanocomposites fabricated with the nanoparticles MWCNT, Al₂O₃ and graphene reveal a uniform mixture of the polymer matrix with the nanoparticles. The XRD results also show that the addition of nanoparticles does not significantly alter the crystal structure of the HDPE matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.