Abstract
<TEX>$Cu_{1.8}Zn_{1.2}(Sn_{1-x}Ge_x)S_4$</TEX> (CZTGeS) nanocrystals were mechanochemically synthesized from elemental precursor powders without using any organic solvents and any additives. The composition of CZTGeS nanocrystals were systematically varied with different Ge mole fraction (x) from 0.1 to 0.9. The XRD, Raman spectroscopy, high-resolution TEM, and diffuse reflectance studies show that the as-synthesized CZTGeS nanocrystals exhibited consistent changes in various structural and optical properties as a function of x, such as lattice parameters, wave numbers for <TEX>$A_1$</TEX> Raman vibration mode, interplanar distances (d-spacing), and optical bandgap energies. The bandgap energy of the synthesized CZTGeS nanocrystals gradually increases from 1.40 to 1.61 eV with increasing x from 0.1 to 0.9, demonstrating that Ge-doping is useful means to tune the bandgap of mechanochemically synthesized nanocrystals-based kesterite thin-film solar cells. The preliminary solar cell performance is presented with an efficiency of 3.66%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.