Abstract

AbstractCopper (I) oxide and zinc oxide films are formed on silicon and glassy quartz substrates by magnetron assisted sputtering. The thickness of the films is tens and hundreds of nanometers. The films are grown at different substrate temperatures and different oxygen pressures in the working chamber. The film samples are studied by the X-ray diffraction technique, scanning electron microscopy, and optical methods. It is established that an increase in the substrate temperature yields a change in the surface morphology of copper (I) oxide films towards the formation of well-pronounced crystallites. The reflectance and Raman spectra suggest that the quality of such films is close to that of bulk Cu_2O crystals produced by the oxidation of copper. As concerns ZnO films, an increase in the substrate temperature and an increase in the partial oxygen pressure make it possible to produce films, for which a sharp exciton structure is observed in the reflectance spectra and the emission of excitons bound at donors is observed in the luminescence spectra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.