Abstract

High frequency induction welding is widely employed for longitudinal seam welding of small scale tubes and pipes because of its relatively high processing speed and efficiency. This research is aimed at understanding the variables that affect the quality of the high frequency induction welding. The welding variables include the welding frequency, weld speed, V-angle and tube thickness. Temperature distribution of the tube is calculated through three dimensional coupled electromagnetic and thermal FE analysis. The skin and proximity effects are considered in the electromagnetic analysis. The influence of the impeder is also analyzed. The effects of the operating welding variables on the temperature distribution are investigated quantitatively by exhibiting the heat affected zone (HAZ). The results explain the mechanism of significant enhancement of welding efficiency when the impeder is used. The proper welding conditions without the overheated edge are obtained through FE analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.