Abstract

A new hybrid carbon-hydrocarbon structure was discovered after pumping a gas mixture of methane and hydrogen through 314 – 400 µm synthetic diamond powder. The experiment was carried out on the microwave plasmachemical installation designed for deposition of polycrystalline diamond films. The main parameters during the experiment were the following: the power of the microwave generator 3,5 kW, the flow rate of hydrogen 400 ml/min, methane 20 ml/min, the pressure in the reactor chamber 63 torr. The gas mixture was pumped at pressure drop of 13 torr. The diamond powders were placed in molybdenum cups inserted into a copper pedestal. In the gaps between the diamond particles of the surface layer unidirectional thread-like structures (length 100 – 500 μm, diameter 2 μm) were found, some of which ended in spherical formations (average diameter 18 μm). Such a composition of thread-like structures and spherical formations was called “dandelion” one. Raman spectroscopy was performed to examine the nature of these formations. The thread-like structure was determined as monocrystalline graphite. The surface of the spherical formation was represented by spindle-shaped structures of nanocrystalline graphite (length 2 μm, thickness 200 nm) and nanodiamond grains with trans-polyacetylene chains [C2H2]n.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call