Abstract

The objective of this study was to clarify the unsteady characteristics of the fluid force acting on limbs during swimming. For this objective, an underwater robot arm was developed in this paper. The robot arm has five degrees-of-freedom in order to perform the various complicated limb motions during swimming. In addition, by changing the hand model into the foot one, the robot also can perform the lower limb motions. The joint torques and the resultant thrust can be measured by the force sensors attached to the robot. In a circulating water tank, an experiment to measure the fluid force was conducted for four swimming strokes of the upper and lower limbs. From the experiment, it was found that even the slight difference of the fluid forces between slightly different swimming motions can be quantified by the developed experimental system. In addition, it was suggested that 'nipping' the water by both lower limbs during the kick of the breaststroke almost does not affect the thrust generation. The developed experimental system with the robot arm is useful not only for measuring the unsteady fluid force, but also for the flow visualization in the future studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.