Abstract
The aim of this work is to evaluate the accuracy of determining the wet component of zenith tropospheric delay (ZTD) from GNSS-measurements and the accuracy of determining the hydrostatic component according to the Saastamoinen model in comparison with the radio sounding data as well. Zenith tropospheric delay is determined mainly by two methods - traditional, using radio sounding or using atmospheric models, such as the Saastamoinen model, and the method of GNSS measurements. Determination of the hydrostatic component of the zenith tropospheric delay was performed by radio sounding data obtained at the aerological station Praha-Libus in 2011-2013 and in 2018. Data were processed for the middle decades of January and July of each year at 0h o’clock of the Universal Time. The wet component was calculated from GNSS observations. By a significant number of radio soundings at the Praha-Libus aerological station, hydrostatic and wet components of zenith tropospheric delay (ZTD) and the same number of ZTD values derived for the corresponding time intervals from GNSS measurements at the GOPE reference station were determined. The values of the wet component of ZTD were determined and compared with the corresponding data obtained from radio soundings. We found that the error of the hydrostatic component in winter does not exceed 10 mm in absolute value, and in summer it is approximately 1.5 times smaller. This is due to differences in the stratification of the troposphere and lower stratosphere in winter and summer. As for the wet component of ZTD, its errors do not exceed: in winter 15 mm, in summer – 35 mm. The resulting differences in summer have a negative sign, indicating a systematic shift, and in winter – both negative and positive. Today, there are many studies aimed at improving the accuracy of determining zenith tropospheric delay by both Ukrainian and foreign authors, but the problem of the accuracy of the hydrostatic component remains open. The study provides recommendations for further research to improve the accuracy of zenith tropospheric delay.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.