Abstract
소표본 분할표 자료에서 적합도 검정통계량들의 카이제곱 근사 적용 가능에 대하여 많은 연구가 진행되었다. 소표본에서 세 가지 검정 통계량(피어슨 카이제곱 Χ<TEX>$^2$</TEX>, 일반화 가능도비 G<TEX>$^2$</TEX>, 그리고 역발산 Ι(2/3) 검정통계량)에 관하여 비교한 Rudas(1986)의 연구를 확장하여, 최근에 제안된 차이측도(BWHD(1/9), BWCS(1/3), NED(4/3) 검정통계량)를 포함시켜 비교 분석하였다. 독립모형의 이차원 분할표, 조건부 독립모형과 한 변수 독립 모형을 따르는 삼차원 분할표에 대한 모의실험을 통하여 생성된 90과 95 백분위수와 이에 대응하는 95% 신뢰구간을 살펴보고 실제 백분위수와 비교하였다. 그 결과 Χ<TEX>$^2$</TEX>, Ι(2/3), 그리고 BWHD(1/9) 검정통계량이 유사한 결과를 나타내었고 이 통계량들이 기존에 제안된 검정통계량들보다 적은 표본크기에서도 카이제곱 근사방법에 적용 가능함을 발견하였다. There has been a long debate on the applicability of the chi-square approximation to statistics based on small sample size. Extending comparison results among Pearson chi-square Χ<TEX>$^2$</TEX>, generalized likelihood .ratio G<TEX>$^2$</TEX>, and the power divergence Ι(2/3) statistics suggested by Rudas(1986), recently developed disparity statistics (BWHD(1/9), BWCS(1/3), NED(4/3)) we compared and analyzed in this paper. By Monte Carlo studies about the independence model of two dimension contingency tables, the conditional model and one variable independence model of three dimensional tables, simulated 90 and 95 percentage points and approximate 95% confidence intervals for the true percentage points are obtained. It is found that the Χ<TEX>$^2$</TEX>, Ι(2/3), BWHD(1/9) test statistics have very similar behavior and there seem to be applcable for small sample sizes than others.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.