Abstract

The elastic recovery of a metal seal is a factor that can be used to assess its sealing performance. In this study, a compliant mechanism topology optimization has been performed to find a structure of a metal O-ring seal that can maintain excellent sealing performance with a maximized elastic recovery over extended operation. An evolutionary structural optimization (ESO) was used as a topology optimization algorithm with two different types of objective functions considering both flexibility and stiffness. In particular, a circular design domain was adopted to consider the outer shape of the metal O-ring seal. The elastic recovery of the optimal topology was calculated and compared to that of a commercial product.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call