Abstract

본 다중반응표면 최적화는 다수의 반응변수(품질특성치)를 동시에 고려하여, 입력변수의 최적 조건을 찾는 것을 목적으로 한다. 지금까지 다중반응표면 최적화를 위하여 다양한 방법이 제안되어 왔는데, 그 중 평균제곱오차 최소화법은 다수의 반응변수의 평균과 표준편차를 동시에 고려하여 최적화하는 방법이다. 이 방법은 기본적으로 평균과 표준편차가 동일한 가중치를 가지고 있다는 것을 전제로 하고 있다. 그러나 문제의 상황에 따라 평균과 표준편차에 서로 다른 가중치를 부여해야 하는 경우도 있다. 이에 본 논문에서는 기존의 평균제곱오차를 확대하여 평균과 표준편차에 서로 다른 가중치도 부여할 수 있도록 가중평균제곱오차 최소화법을 제안하고자 한다. Multiple response surface optimization (MRSO) aims at finding a setting of input variables which simultaneously optimizes multiple responses. The minimization of mean squared error (MSE), which consists of the squared bias and variance terms, is an effective way to consider the location and dispersion effects of the responses in MRSO. This approach basically assumes that both the terms have an equal weight. However, they need to be weighted differently depending on a problem situation, for example, in case that they are not of the same importance. This paper proposes to use the weighted MSE (WMSE) criterion instead of the MSE criterion in MRSO to consider an unequal weight situation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.