Abstract

Work function variation (WFV), Random dopant fluctuation (RDF) 현상은 FinFET에서 발생하는 Process-induced variation 현상의 주요 원인이다. 본 연구에서는 5nm 노드 FinFET에서 WFV/RDF가 유도하는 전기적 소자 특성의 변동 예측을 위해 Artificial neural network (ANN) 모델을 사용한 발전된 방법을 제안한다. 본 논문에서의 ANN 모델은 4개의 input feature [i.e., Average grain size(AGS), Source/Drain doping density(S/D doping), Retrograde channel doping concentration(RCD doping), Retrograde channel doping peak point(RCD Peak)]를 사용해서 소자 성능을 나타내는 7개 output feature [i.e., off-state leakage current(ISUBoff/SUB), saturation drain current(ISUBdsat/SUB), linear drain current(ISUBdlin/SUB), low drain current(ISUBdlo/SUB), high drain current (ISUBdhi/SUB), saturation threshold voltage(VSUBtsat/SUB) and linear threshold voltage(VSUBtlin/SUB)]를 예측한다.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.