Abstract

The powder of 93 W – 4.9 Ni – 2.1 Fe (VNZh-93) pseudo-alloy with a spherical particle shape in the size range of 15 – 50 μm with a grain size of 0.5 – 3 μm was obtained using plasma chemical synthesis, granulation and spheroidization technologies. The possibility of using spheroidized powder VNZh-93 in additive 3D-printing is demonstrated. Studies of the physical and mechanical characteristics and microstructure of VNZh-93 test samples made using the selective laser melting technology (SLM) have been carried out. It is shown that the parameters of the SLM significantly affect the formation of the microstructure of test samples. It is possible to form a homogeneous equiaxed microstructure with an average grain size of about 1 micron using optimal SLM modes. It is shown that maximum density and Vickers hardness of VNZh-93 obtained in optimal SLM modes are 16.8 g/cm3 and 480 HV, respectively. These values are not inferior to the values for VNZh-93 samples obtained using traditional liquid-phase sintering technology. At the same time, the main problem of selective laser melting of VNZh-93 powder is the heterogeneity of the bulk samples microstructure and the formation of microcracks and micropores in their structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.