Abstract

Compositions of ultrafine Si and C particles are promising anode materials for lithium-ion power sources with improved energy characteristics. In the work, samples of lithium-ion power sources with an anode made of ultrafine SiC fibers, as well as mixtures of SiC fibers with graphite (C/SiC) and electrolytically deposited submicron silicon fibers (C/Si/SiC) were fabricated and studied for energy characteristics. The working ability of the mixtures obtained during lithiation/delithiation was shown, and the main energy characteristics of the investigated anode half-cells were determined. After 100 cycles, the SiC anode reached a discharge capacity of 180 and 138 mA·h/g at a charge current of C/20 and C, respectively. Anodes made of mixtures (wt%) 29.5C-70.5SiC and 50Si-14.5C-35.5SiC show discharge capacities of 328 and 400 mA·h/g at a charge current of C/2. The Coulomb efficiency of all samples was above 99%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call