Abstract
Seagrass meadows are considered as critical habitats for a wide variety of marine organisms in coastal and estuarine ecosystems. In many cases, studies on the spatial/temporal distribution of seagrass have depended on direct observations using SCUBA diving. As an alternative method fur studying seagrass distribution, an application of hydroacoustic technique has been assessed for mapping seagrass distribution in Dongdae Bay, on the south coast of Korea, in September 2005. Data were collected using high frequency transducer (420 kHz split-beam), which was installed with towed body system. The system was linked to DGPS to make goo-referenced data. Additionally, in situ seagrass distribution has been observed using underwater cameras and SCUBA diving at four stations in order to compare with acoustic data. Acoustic survey was conducted along 23 transects with 3-4 blot ship speed. Seagrass beds were vertically limited to depths less than 3.5m and seagrass height ranged between 55 and 90cm at the study sites. Dense seagmss beds were mainly found at the entrance of the bay and at a flat area around the center of the bay. Although the study area was a relatively small, the vertical and spatial distributions of the seagrass were highly variable with bathymetry and region. Considering dominant species, Zostera marina L., preliminary estimation of seagrass biomass with acoustic and direct sampling data was approximately <TEX>$56.55g/m^2$</TEX>, and total biomass of 104 tones (coefficient variation: 25.77%) was estimated at the study area. Hydroacoustic method provided valuable information to understand distribution pattern and to estimate seagrass biomass.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.