Abstract
Because of the population growth and industrialization in recent decades, the air quality over the world has been worsened with the increase of PM10 concentration. Korea is located near the eastern part of China which has many industrial complexes, so the consideration of China’s air quality is necessary for the PM10 prediction in Korea. This paper examines a machine learning-based modeling of the prediction of tomorrow’s PM10 concentration in the form of a gridded map using the AirKorea observations, Chinese cities’ air quality index, and NWP (numerical weather prediction) model data. A blind test using 23,048 cases in 2019 produced a correlation coefficient of 0.973 and an MAE (mean absolute error) of 4.097㎍/㎥, which is high accuracy due to the appropriate selection of input variables and the optimization of the machine learning model. Also, the prediction model showed stable predictability irrespective of the season and the level of PM10. It is expected that the proposed model can be applied to an operative system if a fine-tuning process using a larger database is accomplished.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.