Abstract
Given a list L(v) for each vertex v, we say that the graph G is L-colorable if there is a proper vertex coloring of G, where each vertex v takes its color from L(v). The graph is uniquely k-list colorable if there is a list assignment L such that |L(v) | = k for every vertex v and the graph has exactly one L-coloring with these lists. If a graph G is not uniquely k-list colorable, we also say that G has property M(k). The least integer k such that G has the property M(k) is called the m-number of G, denoted by m(G). In this paper, we characterize the unique list colorability of the graph G = Kn2 + Kr. In particular, we determine the number m(G) of the graph G = Kn2 + Kr.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.