Abstract

원격탐사 방법을 활용한 변화지역 탐지, 재난재해 지도 작성, 작황 모니터링 등 다중시기의 위성영상을 활용한 결과를 도출하기 위해서는 시계열 영상 정보를 서로 비교할 수 있는 공통의 스케일로 정규화 하는 것이 필요하다. 다중시기 영상에 대한 정규화 방법은 절대복사보정과 상대복사 보정으로 나눌 수 있으며, 본 연구에서는 상대복사 보정을 통한 시계열 위성영상처리 기법을 다루고자 한다. 2011년 3월 해일 피해가 발생했던 일본 센다이 지역을 연구대상지로 선정하였고, KOMPSAT-2 다중분광영상을 이용한 사고 전, 후의 피해지역 탐지에 있어 상대복사 보정의 실효성을 분석하였다. 다양한 상대복사 보정 기법 중에서 정준상관분석을 통해 PIFs(Pseudo Invariant Features) 지역을 자동으로 추출하는 MAD(Multivariate Alteration Detection) 기법을 적용하였다. 본 사례연구 분석결과 MAD 방식에 의한 자동 PIFs 지역의 추출은 비교적 높은 정확도 수준에서 이루어짐을 확인할 수 있었으며, 상대복사 보정된 시계열 위성영상을 사용함으로써 변화지역 자동탐지의 신뢰수준을 높일 수 있는 것으로 나타났다. It is necessary to normalize spectral image values derived from multi-temporal satellite data to a common scale in order to apply remote sensing methods for change detection, disaster mapping, crop monitoring and etc. There are two main approaches: absolute radiometric normalization and relative radiometric normalization. This study focuses on the multi-temporal satellite image processing by the use of relative radiometric normalization. Three scenes of KOMPSAT-2 imagery were processed using the Multivariate Alteration Detection(MAD) method, which has a particular advantage of selecting PIFs(Pseudo Invariant Features) automatically by canonical correlation analysis. The scenes were then applied to detect disaster areas over Sendai, Japan, which was hit by a tsunami on 11 March 2011. The case study showed that the automatic extraction of changed areas after the tsunami using relatively normalized satellite data via the MAD method was done within a high accuracy level. In addition, the relative normalization of multi-temporal satellite imagery produced better results to rapidly map disaster-affected areas with an increased confidence level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.