Abstract

The results of studies of the photodynamics of the excited state decay of a hybrid semiconductor nanostructure, which is an array of InP nanowires with InAsP nanoinsertions passivated with a layer of TOPO (trioctylphosphine oxide) containing colloidal CdSe/ZnS quantum dots, are presented. Time- and spectrally resolved measurement of photoluminescence InAsP nanoinsertions in the near infrared region at temperatures of 80 K and 293 K were made. The presence of a quasi-Langmuir layer of TOPO-CdSe/ZnS quantum dots on the surface of InP/InAsP/InP nanowires leads to an increase in the duration of radiative recombination and its dependence on temperature. It was found that the synthesized structure has a type-II heterojunction at the interface between the InAsP nanoinsertion and the InP volume. The influence of interfacial processes on increasing the duration of radiative recombination is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call