Abstract

GMR isolator was modeled using a Wheatstone bridge which is profitable for transmitting rectangular wave digital data, and the output voltage characteristics in relation to the input current were investigated in time domain. GMR isolator modeling was divided into two parts, namely magnetic and electric parts. The flow chart of the modeling was drawn in which measured MR curve of the spin valves were incorporated to obtain the electrical voltage output. For magnetic modeling, 3-dimensional model of planar coil was analyzed by FEM method to obtain the magnetic field strength corresponding to the input current. For electric modeling, resistance, inductance and capacitance of the planar coil were calculated and magnetic field waveform was obtained corresponding to the coil current waveform in time domain. Finally, MR-H curves of spin valves and the magnetic field waveform at the spin valves were composited to obtain the output voltage waveform of the isolator. Even though the amplitude of the coil current waveform was increased by 100%, decreased by 90%, or delayed by 10% of the period compared with the input current, similar transmitted output voltage waveform to the input current waveform was obtained due to hysteretic characteristics of the spin valves at the transmission speed of over 400 Mbit/s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.