Abstract

본 논문에서는 색조영상의 R-, G-, B-성분에서 랜덤결측된 화소값들의 대체를 위한 프리퀀티스틱(frequentictic) 기법을 제공한다. 이 기법은 관측영상을 가우시안 마코프 랜덤필드 상의 실현치로서 가정하고, 주어진 화소 내의 근방 화소들이 에지 강도에 따른 서로 다른 분산을 가지는 정규분포를 따른다고 설계함으로써 에지에서 결측화소 대체값이 이질적 색상에 영향 받지 않도록 한다. 이러한 모형하에서 우도가 최대화하도록 결측화소값들을 근사 EM 알고리즘에 기반 한 방법으로 모수들을 추정하고 결측화소를 대체한다. 제안된 방법의 결과들은 보간법에 기초한 대체법과 비교하여 그 유효성을 보인다. In this paper, a frequentistic approach to impute the values of R, G, B-components in random missing pixels of color image is provided. Under assumption that the given image is a realization of Gaussian Markov random field, its model is designed such that each neighbor pixel values for a given pixel follows (independently) the normal distribution with covariance matrix scaled by an evaluates of the similarity between two pixel values, so that the imputation is not to be affected by the neighbors with different color. An approximate EM-based algorithm maximizing the underlying likelihood is implemented to estimate the parameters and to impute the missing pixel values. Some experiments are presented to show its effectiveness through performance comparison with a popular interpolation method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.