Abstract

The formation of ohmic Au/Mo/Ti contacts to epitaxial p-type diamond films is studied. The effect of annealing on the electrical and structural properties of contacts has been investigated. It was shown that during rapid thermal annealing, the outer layer of gold protects the contact system from oxidation up to a temperature of 850°C, unlike the simplified Au/Ti system, which is more common in modern works. In Au/Ti structures without a Mo layer after high-temperature annealing, effective diffusion of titanium into the gold layer occurs, which reduces its protective properties and accelerates the diffusion of oxygen to the boundary with the diamond. Oxidation of the Ti/C contact region blocks the formation of a conductive layer of titanium carbide with high adhesion at the border with diamond. The role of various factors in reducing the contact resistance is compared: annealing for the formation of titanium carbide, heavy doping of diamond with boron atoms, and crystalline perfection of epitaxial diamond substrates. For doped epitaxial films grown on single-sector quality substrates, non-annealed ohmic contacts with a record contact resistance of 4•10<-7> Ω•cm<2> were obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.