Abstract

In this study, blades manufactured by 3D printing technology were experimentally tested to be used for a scaled wind turbine in a wind tunnel. The scaled model was originally designed and manufactured by researchers at the Technical University of Munich. The model has been slightly modified to adopt the 3D printed blades for this study. Also, control algorithms for the power maximization in the low wind speed regions were constructed and applied to a commercial programmable logic controller for wind tunnel tests of the scaled model. For comparison, the scaled model was also modeled in MATLAB/Simulink and dynamic simulations were performed with the measured wind speed as an input. The simulation results seemed to overpredict the experimental results initially, but by considering the unexpected extra generator torque due to friction of the shaft, the errors were reduced to be less than 5%. Based on this study, the application of 3D printed blades to the wind turbine scaled models of a similar rotor diameter was found to be an efficient and effective way of blade manufacturing and scaled model testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.