Abstract

자기유도형 기반의 무선전력 전송 기술을 이용한 무선충전 기능이 최근 스마트폰 등에 채용되어 주요한 소비자 편의기능으로 자리잡고 있다. 무선전력전송 모듈은 무선전력 전송효율을 개선하고 휴대폰 주요 회로부에 대한 전자기장 간섭을 억제하기 위하여 전자기장 차폐 소재의 사용이 필수적이다. 본 논문에서는 무선전력 전송모듈용 전자기장 차폐 소재의 역할과 기술에 대해 소개하였다. 이와 함께 향후 확산될 중급 전력(mid-power)과 대전력(high-power)영역의 무선전력 전송 응용분야에서 대응 가능한 차폐 소재의 개발 방향을 정리하였다. Currently, wireless power transmission technology based on magnetic induction was employed in battery charger for smart phone application. The system consists of wireless power transmitter in base station and receiver in smart phone. Size and thickness of receiver was strictly limited in the newest smart phone. In order to achieve high efficiency of a tiny small wireless power receiver module, sub-millimeter thick electromagnetic wave shielding sheet having high permeability and Q was essential component. It was found that magnetic field from transmitter to receiver can be intensified by sufficient shielding cause to minimize leakage magnetic flux by those magnetic properties. This leads to high efficiency of wireless power transmission and protects crucial integrated circuit of main board from electromagnetic noise. The important soft magnetic materials were introduced and summarized for the current small-power wireless power charger and NFC application and mid-power home appliance and high-power automotive application in the near future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.