Abstract

본 연구에서는 공력설계공간의 지식습득을 위해 분산해석법과 자기조직화지도의 이용을 제안하였다. 이 기법들은 각각의 설계변수가 목적함수에 미치는 영향을 예측 가능하게 한다. 더욱이, 분산해석법은 설계변수들의 상호관계가 목적함수에 미치는 영향도 예측 가능하게 하며, 자기조직화지도는 목적함수들 사이에 어떠한 trade-off관계가 있는지도 예측 가능하게 한다. 본 논문에서 72개의 설계변수와 4개의 목적함수를 가진 초음속 날개 설계의 결과에 대하여 이들의 데이터 마이닝 기법들을 적용하였다. Two data mining techniques, analysis of variance (ANOVA) and self-organizing map (SOM), are applied to knowledge discovery in aerodynamic design space. These methods make it possible to identify the effect of each design variable on the objective functions. Furthermore, ANOVA shows the effect of interaction between design variables on the objective function and SOM visualizes the trade-off among objective functions. Present methods are applied to the result of the supersonic wing design which includes 72 design variables and 4 objective functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.