Abstract

하지근력증강로봇은 인간의 하체에 착용하여 보행능력을 강화하거나 보조하기 위한 장비다. 보행능력을 향상하기 위해 로봇은 착용자의 걷는 움직임을 감지하고 이에 적합한 로봇의 동작을 구동한다. 본 논문에서는 로봇이 착용자의 움직임을 감지하는 방법을 소개하고, 감지된 데이터를 착용자의 현재 보행단계를 의미하는 보행단계상태 정보로 변환하는 보행단계구분 알고리즘을 제시한다. 로봇은 보행단계상태 정보에 따라 현재 필요한 제어모드를 결정하고 로봇구동기를 작동하기 때문에 잘못된 정보가 전달된다면 로봇은 착용자의 보행능력을 향상할 수 없거나 착용자에게 오히려 불편을 줄 수 있다. 따라서 보행단계구분 알고리즘은 항상 정확한 정보를 제공할 수 있어야 한다. 하지만 본 연구에서 사용하는 센서장치의 경우 작은 움직임에도 민감하게 반응하는 특성이 있어 센서데이터를 임계기준으로 구분하는 방법으로는 항상 정확한 보행단계상태 정보를 구할 수 없다. 이러한 특성을 극복하면서 정확한 정보를 제공하기 위해 확률적 구분 방법을 응용한 나이브-플렉시블 베이지안 보행단계구분 알고리즘을 제안하였고, 실험을 통해 제안 방법의 정확성을 비교 분석하였다. A lower extremity exoskeleton is a robot device that attaches to the lower limbs of the human body to augment or assist with the walking ability of the wearer. In order to improve the wearer's walking ability, the robot senses the wearer's walking locomotion and classifies it into a gait-phase state, after which it drives the appropriate robot motions for each state using its actuators. This paper presents a method by which the robot senses the wearer's locomotion along with a novel classification algorithm which classifies the sensed data as a gait-phase state. The robot determines its control mode using this gait-phase information. If erroneous information is delivered, the robot will fail to improve the walking ability or will bring some discomfort to the wearer. Therefore, it is necessary for the algorithm constantly to classify the correct gait-phase information. However, our device for sensing a human's locomotion has very sensitive characteristics sufficient for it to detect small movements. With only simple logic like a threshold-based classification, it is difficult to deliver the correct information continually. In order to overcome this and provide correct information in a timely manner, a probabilistic gait-phase classification algorithm is proposed. Experimental results demonstrate that the proposed algorithm offers excellent accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.