Abstract
Tool condition monitoring plays one of the most important roles in the improvement of both machining quality and productivity. In this regard, various process signals and monitoring methods have been developed. However, most of the existing studies used cutting force or acoustic emission signals, which posed risks of interference with the machining system in dynamics, fixturing, and machining configuration. In this study, a feed motor current signal is used as a process signal representing process and tool states in tool breakage monitoring based on an adaptive autoregressive model and unsupervised neural network. From the experimental results using various cases of tool breakage, it is shown that the developed system can successfully detect tool breakage before two revolutions of the spindle after tool breakage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Korean Society of Manufacturing Process Engineers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.