Abstract
빅 데이터의 출현은 여러가지 과학적 난제에 대답 할 수 있는 기회를 제공하지만 흥미로운 도전을 또한 제공한다. 이러한 빅데이터의 주요 특징으로 "고차원"과 "대용량"을 들 수가 있다. 본 논문은 이러한 두 가지 특징에 동반되는 다음과 같은 도전문제에 대한 개요를 제시한다 : (1) 고차원 자료에서의 소음 축적과 위 상관 관계; (ii) 대용량 자료분석을 위한 계산 확장성. 또한 본 논문에서는 재난예측, 디지털 인문학과 세이버메트릭스 등 다양한 분야에서 빅 데이터의 다양한 응용사례를 제공한다. The advent of big data brings the opportunity to answer many open scientic questions but also presents some interesting challenges. Main features of contemporary datasets are the high dimensionality and massive sample size. In this paper, we give an overview of major challenges caused by these two features: (1) noise accumulation and spurious correlations in high dimensional data; (ii) computational scalability for massive data. We also provide applications of big data in various fields including forecast of disasters, digital humanities and sabermetrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.