Abstract

Abstract Among several factors controlling soil compaction, temperature is the factor that varies with region and season. Although earthwork is performed in many projects in the cold regions of the earth, studies on quantifying soil compaction associated with temperature are limited. This experimental study investigates the temperature effect on the soil compaction of cohesionless soil. Jumunjin sand was selected for the tests to represent cohesionless clean sand, which is widely used as an engineering fill at petrochemical projects such as northern Alberta of Canada and Russia. The laboratory test program consists of performing a series of standard proctor tests varying temperature of soil samples ranging from -10°C to 17°C. Test results indicate that soil specimen volume expansion occurred from bulking and its range was 0% to 6% with zero above temperature. For increasing temperature from 0°C to 17°C, water content corresponding to maximum volume (minimum dry unit weight) was decreased and water content corresponding to minimum volume (maximum dry unit weight observed after reaching minimum dry unit weight) was slightly increased with increasing temperature. In zero below temperature, dry unit weight gradually decreased with increasing water content. In this case, no bulking effect was found and soil specimen volume increased due to the higher unit volume of ice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.