Abstract

AbstractThe influence of the length of ZnO nanorods (500 nm in diameter) on the mode structure and spontaneous luminescence in the ultraviolet spectral region is studied by optical luminescence microscopy. It is shown that individual nanorods with a metal mirror on one face exhibit only two or three laser modes in the case of short nanocavity lengths (8–30 μm). Different values of the optical losses of the longitudinal and transverse waveguide modes are established for a ZnO nanorod lying on a glassy substrate. The quadratic dependence of the spontaneous luminescence intensity on the rod length can be attributed to improvement of the optical quality factor Q of bound longitudinal modes of light within longer rods (the Purcell effect).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.